Name

atan2, atan2f, atan2l
- arc tangent function of two variables

Library

libm.lib

Synopsis

  #include <math.h>
  double atan2 (double y, double x);
  float atan2f (float y, float x);
  long double atan2 (long double y, long double x);

Return values

The atan2, atan2f, and atan2l functions, if successful, return the arc tangent of y/ x in the range -words [- pi, + pi] radians. Here are some of the special cases: atan2 (y, x, No, :=, Ta);
atan (y/x, Ta);
if x > 0,
             sign( y )*(pi - atan (\*(Bay/x\*(Ba, ), Ta);
if x < 0,
             0            if x = y = 0, or
             sign( y )*\*(Pi/2            if x = 0 != y.

Detailed description

The atan2 and atan2f functions compute the principal value of the arc tangent of y/ x, using the signs of both arguments to determine the quadrant of the return value. The function atan2l is an alias to the function atan2.

Examples

#include <math.h>
int main( void )
{
   double x1 = -862.42, x2 = 78.5149, y;
   y = atan2( x1, x2 );
   printf( "atan2(%f , %f) = %f\n", x1, x2, y );
   y = atan2f( x1, x2 );
   printf( "atan2f(%f , %f) = %f\n", x1, x2, y );
   y = atan2l( x1, x2 );
   printf( "atan2l(%f , %f) = %f\n", x1, x2, y );
}


Output

atan2( -862.42, 78.5149 ) = -1.480006
atan2f( -862.42, 78.5149 ) = -1.480006
atan2l( -862.42, 78.5149 ) = -1.480006



Notes

The function atan2 defines "if x > 0," atan2 (0, 0);
= 0 despite that previously atan2 (0, 0);
may have generated an error message. The reasons for assigning a value to atan2 (0, 0);
are these:
  1. Programs that test arguments to avoid computing atan2 (0, 0);
    must be indifferent to its value. Programs that require it to be invalid are vulnerable to diverse reactions to that invalidity on diverse computer systems.
  2. The atan2 function is used mostly to convert from rectangular (x,y) to polar (r,theta) (r,th) coordinates that must satisfy x = r*cos theta r*costh and y = r*sin theta. r*sinth. These equations are satisfied when (x=0,y=0) is mapped to (r=0,theta=0).

    (r=0,th=0). In general, conversions to polar coordinates should be computed thus:

    
    
    r       := hypot(x,y);  ... := sqrt(x*x+y*y)
    theta   := atan2(y,x).
    
    
    r       := hypot(x,y);  ... := v/(x20+y20)
    th      := atan2(y,x).
    
    
    
    

  3. The foregoing formulas need not be altered to cope in a reasonable way with signed zeros and infinities on a machine that conforms to IEEE 754; the versions of hypot and atan2 provided for such a machine are designed to handle all cases. That is why atan2 (±0, -0);
    = ±pi for instance. In general the formulas above are equivalent to these:
    
    
    r := sqrt(x*x+y*y); if r = 0 then x := copysign(1,x);
    r := v/(x*x+y*y);  if r = 0 then x := copysign(1,x);
    
    


See also

acos, asin, atan, cos, cosh, math, sin, sinh, tan, tanh
The atan2 function conforms to -isoC.

Feedback

For additional information or queries on this page send feedback

© 2008 Nokia Corporation. All rights reserved. This documentation can be used in the connection with this Product to help and support the user.

Top