Name
j0, j0f, j0l, j1, j1f, j1l, jn, jnf, jnl, y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl
- Bessel functions
Library
libm.lib
Synopsis
|
long double
j0l (long double x);
|
|
long double
j1l (long double x);
|
|
double
jn (int n, double x);
|
|
float
jnf (int n, float x);
|
|
long double
jnl (int n, long double x);
|
|
long double
y0l (long double x);
|
|
long double
y1l (long double x);
|
|
double
yn (int n, double x);
|
|
float
ynf (int n, float x);
|
|
long double
ynl (int n, long double x);
|
Return values
If these functions are successful,
the computed value is returned.
Detailed description
The functions
j0,
j0f,
j1
and
j1f
compute the
Bessel function of the first kind of the order
0 and the
order
1, respectively,
for the
real value
x;
the functions
jn
and
jnf
compute the
Bessel function of the first kind of the integer
order
n
for the real value
x.
The functions
y0,
y0f,
y1,
and
y1f
compute the linearly independent
Bessel function of the second kind of the order
0 and the
order
1, respectively,
for the
positive
real
value
x;
the functions
yn
and
ynf
compute the
Bessel function of the second kind for the integer
order
n
for the positive
real
value
x.
Here the long double version APIs are aliases the double version APIs.
All APIs <Function>l behaves similiar to that of <Function>.
Examples
#include <math.h>
int main( )
{
double x = 1.0;
/*J0(), j0f() and j0l() */
double y = j0( x );
printf( "j0( %f) = %f\n", x, y );
y = j0f( x );
printf( "j0f( %f) = %f\n", x, y );
y = j0l( x );
printf( "j0l( %f) = %f\n\n", x, y );
/*J1(), j1f() and j1l() */
y = j1( x );
printf( "j1( %f) = %f\n", x, y );
y = j1f( x );
printf( "j1f( %f) = %f\n", x, y );
y = j1l( x );
printf( "j1l( %f) = %f\n\n", x, y );
/*jn(), jnf() and jnl() */
y = jn( 3, x );
printf( "jn( 2, %f) = %f\n", x, y );
y = jnf( 1, x );
printf( "jnf( 1, %f) = %f\n", x, y );
y = jnl( 10, 0.75 );
printf( "jnl(10, %f) = %f\n\n", 0.75, y );
/*y0(), y0f() and y0l() */
y = y0( x );
printf( "y0( %f) = %f\n", x, y );
y = y0f( x );
printf( "y0f( %f) = %f\n", x, y );
y = y0l( x );
printf( "y0l( %f) = %f\n\n", x, y );
/*y1(), y1f() and y1l() */
y = y1( x );
printf( "y1( %f) = %f\n", x, y );
y = y1f( x );
printf( "y1f( %f) = %f\n", x, y );
y = y1l( x );
printf( "y1l( %f) = %f\n\n", x, y );
/*yn(), ynf() and ynl() */
y = yn( 3, x );
printf( "yn( 2, %f) = %f\n", x, y );
y = ynf( 1, x );
printf( "ynf( 1, %f) = %f\n", x, y );
y = ynl( 10, 0.75 );
printf( "ynl(10, %f) = %f\n\n", 0.75, y );
}
Output
j0( 1.000) = 0.76519768
j0f( 1.000) = 0.76519768
j0l( 1.000) = 0.76519768
j1 ( 1.000) = 0.4400505
j1f( 1.000) = 0.4400505
j1l( 1.000) = 0.4400505
jn ( 3, 1.000) = 0.0195633
jnf( 1, 1.000) = 0.4400505
jnl( 10, 0.75) = 0.1496212
y0 ( 1.000) = 0.0882569
y0f( 1.000) = 0.0882569
y0l( 1.000) = 0.0882569
y1 ( 1.000) = -0.7812128
y1f( 1.000) = -0.7812128
y1l( 1.000) = -0.7812128
yn ( 3, 1.000) = -5.8215176
ynf( 1, 1.000) = -0.781212
ynl( 10, 0.75) = -2133501638.9
See also
math
Feedback
For additional information or queries on this page send feedback
© 2008 Nokia Corporation. All rights reserved. This documentation can be used in the connection with this Product to help and support the user. |
|