Name

remainder, remainderf, remainderl, remquo, remquof, remquol,
- floating-point remainder function

Library

libm.lib

Synopsis

  #include <math.h>
  double remainder (double x, double y);
  float remainderf (float x, float y);
  long double remainder (long double x, long double y);
  double remquo (double x, double y, int *quo);
  float remquof (float x, float y, int *quo);
  long double remquol (long double x, long double y, int *quo);

Return values

remainder function returns the remainder, unless y is zero, when the function fails.


Detailed description

The functions remainder, remainderf, remquo, and remquof return the remainder r := x - n*y where n is the integer nearest the exact value of -words x Ns / Ns Fa y
moreover if \*(Ba n - x / y \*(Ba = 1/2 then n is even. Consequently the remainder is computed exactly and \*(Ba r \*(Ba <= \*(Ba y \*(Ba/2. But attempting to take the remainder when y is 0 or x is ±oo is an invalid operation that produces a NaN.

The remquo and remquof functions also store the last k bits of n in the location pointed to by quo, provided that n exists. The number of bits k is platform-specific, but is guaranteed to be at least 3. remainderl and remquol are aliases to the functions remainder and remquo respectively.


Examples

#include <math.h>
int main( )
{
   double inp1 = 1.625;
   double inp2 = 1.0;
   double y;  
   y = remainder( inp1, inp2 );
   printf( "remainder(%f , %f) = %f\n", inp1,  inp2,  y );
   y = remainderf( inp1, inp2 );
   printf( "remainderf(%f , %f) = %f\n", inp1, inp2, y );
   y = remainderl( inp1, inp2 );
   printf( "remainderl(%f , %f) = %f\n\n", inp1, inp2, y );
   y = remquo( inp1, inp2 );
   printf( "remquo(%f , %f) = %f\n", inp1,  inp2,  y );
   y = remquof( inp1, inp2 );
   printf( "remquof(%f , %f) = %f\n", inp1, inp2, y );
   y = remquol( inp1, inp2 );
   printf( "remquol(%f , %f) = %f\n", inp1, inp2, y );
}


Output

remainder  ( 1.625, 1.0) = -0.375
remainderf ( 1.625, 1.0) = -0.375
remainderl ( 1.625, 1.0) = -0.375
remquo ( 1.625, 1.0) = -0.375
remquof( 1.625, 1.0) = -0.375
remquol( 1.625, 1.0) = -0.375



See also

fmod, ieee, math

Feedback

For additional information or queries on this page send feedback

© 2008 Nokia Corporation. All rights reserved. This documentation can be used in the connection with this Product to help and support the user.

Top