sort (RandomAccessIterator first, RandomAccessIterator last) | Function |
sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp) | Function |
templatevoid sort(RandomAccessIterator first, RandomAccessIterator last); template void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);
sort sorts the elements in the range [first, last). It does approximately N \log N (where N equals to last - first) comparisons on the average. If the worst case behavior is important stable_sort or partial_sort should be used.
stable_sort (RandomAccessIterator first, RandomAccessIterator last) | Function |
stable_sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp) | Function |
templatevoid stable_sort(RandomAccessIterator first, RandomAccessIterator last); template void stable_sort(RandomAccessIterator first, RandomAccessIterator last,Compare comp);
stable_sort sorts the elements in the range [first, last). It is stable, that is, the relative order of the equal elements is preserved. It does at most N(\log N)^2 (where N equals to last - first) comparisons; if enough extra memory is available, it is N \log N.
templatevoid partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last);
templatevoid partial_sort(RandomAccessIterator first, RandomAccessIterator middle, RandomAccessIterator last, Compare comp);
partial_sort places the first middle - first sorted elements from the range [first, last) into the range [first, middle). The rest of the elements in the range [middle, last) are placed in an undefined order. It takes approximately (last - first) * log(middle - first) comparisons.
RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last); templateRandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp);
partial_sort_copy places the first min(last - first, result_last - result_first) sorted elements into the range [result_first, result_first + min(last - first, result_last - result_first)). It returns either result_last or result_first + (last - first) whichever is smaller. It takes approximately (last - first) * log(min(last - first, result_last - result_first)) comparisons.
|
|