This class is used to build custom pointer containers with an underlying map-like container. The interface of the class is an extension of the interface from associative_ptr_container.
Hierarchy:
namespace boost { template < class T, class VoidPtrMap, class CloneAllocator = heap_clone_allocator > class ptr_map_adapter { public: // typedefs typedef VoidPtrMap::key_type key_type; typedef T* mapped_type; typedef T& mapped_reference; typedef const T& const_mapped_reference; typedef ... value_type; typedef ... reference; typedef ... const_reference; typedef ... pointer; typedef ... const_pointer; public: // modifiers std::pair<iterator,bool> insert( key_type& k, T* x ); template< class U > std::pair<iterator,bool> insert( const key_type& k, std::auto_ptr<U> x ); public; // lookup T& operator[]( const key_type& key ); T& at( const key_type& key ); const T& at( const key_type& key ) const; public: // pointer container requirements bool transfer( iterator object, ptr_map_adapter& from ); size_type transfer( iterator first, iterator last, ptr_map_adapter& from ); template< class Range > size_type transfer( const Range& r, ptr_map_adapter& from ); size_type transfer( ptr_map_adapter& from ); }; // class 'ptr_map_adapter' } // namespace 'boost'
The following types are implementation defined:
typedef ... value_type; typedef ... reference; typedef ... const_reference; typedef ... pointer; typedef ... const_pointer;
However, the structure of the type mimics std::pair s.t. one can use first and second members. The reference-types are not real references and the pointer-types are not real pointers. However, one may still write
map_type::value_type a_value = *m.begin(); a_value.second->foo(); map_type::reference a_reference = *m.begin(); a_reference.second->foo(); map_type::const_reference a_creference = *const_begin(m); map_type::pointer a_pointer = &*m.begin(); a_pointer->second->foo(); map_type::const_pointer a_cpointer = &*const_begin(m);
The difference compared to std::map<Key,T*> is that constness is propagated to the pointer (that is, to second) in const_itertor.
std::pair<iterator,bool> insert( key_type& k, value_type x );
Requirements: x != 0
Effects: Takes ownership of x and insert it if there is no equivalent of it already. The bool part of the return value indicates insertion and the iterator points to the element with key x.
Throws: bad_pointer if x == 0
Exception safety: Strong guarantee
template< class U > std::pair<iterator,bool> insert( const key_type& k, std::auto_ptr<U> x );
Equivalent to (but without the const_cast): return insert( const_cast<key_type&>(k), x.release() );
T& operator[]( const key_type& key );
Effects: returns the object with key key if it exists; otherwise a new object is allocated and inserted and its reference returned.
Exception-safety: Strong guarantee
T& at( const key_type& key );
const T& at( const key_type& jey ) const;
Requirement: the key exists
Throws: bad_ptr_container_operation if the key does not exist
bool transfer( iterator object, ptr_map_adapter& from );
Requirements: not from.empty()
Effects: Inserts the object defined by object into the container and remove it from from if no equivalent object exists.
Returns: whether the object was transferred
Exception safety: Strong guarantee
size_type transfer( iterator first, iterator last, ptr__set_adapter& from );
Requirements: not from.empty()
Effects: Inserts the objects defined by the range [first,last) into the container and remove it from from. An object is only transferred if no equivalent object exists.
Returns: the number of transferred objects
Exception safety: Basic guarantee
template< class Range > void transfer( const Range& r, ptr_map_adapter& from );
Effects: return transfer( boost::begin(r), boost::end(r), from );
size_type transfer( ptr_set_adapter& from );
Effects: return transfer( from.begin(), from.end(), from );.
©Thorsten Ottosen 2004-2006. Use, modification and distribution is subject to the Boost Software License, Version 1.0 (see http://www.boost.org/LICENSE_1_0.txt). |
|
---|