BN_add,
BN_sub,
BN_mul
BN_sqr,
BN_div,
BN_mod
BN_nnmod,
BN_mod_add
BN_mod_sub,
BN_mod_mul
BN_mod_sqr,
BN_exp
BN_mod_exp,
BN_gcd
arithmetic operations on BIGNUMs
libcrypto.lib
#include <openssl/bn.h>
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx); int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
BN_add()
adds a and b and places the result in r (r=a+b
).
r may be the same BIGNUM as a or b.
BN_sub()
subtracts b from a and places the result in r (r=a-b
).
BN_mul()
multiplies a and b and places the result in r (r=a*b
).
r may be the same BIGNUM as a or b.
For multiplication by powers of 2, use BN_lshift().
BN_sqr()
takes the square of a and places the result in r
(r=a^2
). r and a may be the same BIGNUM.
This function is faster than BN_mul(r,a,a).
BN_div()
divides a by d and places the result in dv and the
remainder in rem (dv=a/d, rem=a%d
). Either of dv and rem may
be NULL, in which case the respective value is not returned.
The result is rounded towards zero; thus if a is negative, the
remainder will be zero or negative.
For division by powers of 2, use BN_rshift().
BN_mod()
corresponds to
BN_div()
with dv set to NULL.
BN_nnmod()
reduces a modulo m and places the non-negative
remainder in r.
BN_mod_add()
adds a to b modulo m and places the non-negative
result in r.
BN_mod_sub()
subtracts b from a modulo m and places the
non-negative result in r.
BN_mod_mul()
multiplies a by b and finds the non-negative
remainder respective to modulus m (r=(a*b) mod m
). r may be
the same BIGNUM as a or b. For more efficient algorithms for
repeated computations using the same modulus, see
BN_mod_mul_montgomery() and
BN_mod_mul_reciprocal().
BN_mod_sqr()
takes the square of a modulo m and places the
result in r.
BN_exp()
raises a to the p-th power and places the result in r
(r=a^p
). This function is faster than repeated applications of
BN_mul().
BN_mod_exp()
computes a to the p-th power modulo m (r=a^p %
m
). This function uses less time and space than BN_exp().
BN_gcd()
computes the greatest common divisor of a and b and
places the result in r. r may be the same BIGNUM as a or
b.
For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see BN_CTX_new().
Unless noted otherwise, the result BIGNUM must be different from the arguments.
For all functions, 1 is returned for success, 0 on error. The return
value should always be checked (e.g., if (!BN_add(r,a,b)) goto err;
).
The error codes can be obtained by ERR_get_error().
bn(), ERR_get_error(), BN_CTX_new(), BN_add_word(), BN_set_bit()
BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
BN_mod_exp()
and
BN_gcd()
are available in all versions of SSLeay and
OpenSSL. The ctx argument to BN_mul()
was added in SSLeay
0.9.1b. BN_exp()
appeared in SSLeay 0.9.0.
BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr()
were added in
OpenSSL 0.9.7.
For additional information or queries on this page send feedback
� 2008-2009 Nokia Corporation. All rights reserved. This documentation can be used in the connection with this Product to help and support the user. |
|